SUPPLEMENTARY MATERIAL—AnNdo et al. [Manuscript # 2012-137]

Analytical methods
Planktonic foraminifera

The ooze samples of Site U1348-Core 2R (10 cm-spacing; 15 levels) were weighed for 1.0 g, soaked in
3% H,0, solution for a few hours, gently spray-washed on a 63 um-opening screen, and oven-dried at
<50 °C. To preclude any possibility of carbonate dissolution or mechanical fragmentation through sample
processing, water for dilution of H,O, and washing was adjusted to pH = ~10 with a small amount of
NH,4OH solution, and an ultrasonic bath not used for cleaning. Each washed sample was dried, sieved on a
125 pm-opening screen, and split accurately using an Otto-splitter if necessary. It was then picked and
counted for total foraminifera with ¢. 200-400 individuals of planktonic foraminifera. Identification of
planktonic foraminifera was at species-level based on multiple literature sources, in particular Smith &
Pessagno (1973), Robaszynski et al. (1984), Nederbragt (1991), and Petrizzo et al. (2011). Scanning
electron microscopic study was performed using a Philips XL-30 ESEM at the National Museum of
Natural History, Smithsonian Institution.

Unabbreviated names and I0ODP sample IDs of specimens in Figure 1 are as follows:

—Interval (i), top-left to clockwise: Sigalia deflaensis rugocostata (U1348-2R-CC, 23-24 cm);
Ventilabrella eggeri (U1348-2R-CC, 10-11 cm); Hendersonites carinatus (U1348-2R-CC, 3-4 cm);
Marginotruncana undulata (U1348-2R-CC, 23-24 cm); Marginotruncana sinuosa (U1348-2R-CC,
23-24 cm); Dicarinella concavata (U1348-2R-CC, 27-30 cm); Dicarinella asymetrica (U1348-2R-
CC, 23-24 cm).

—Interval (ii), left to right: Globotruncanita elevata (U1348-2R-1, 90-91 c¢cm); Contusotruncana
plummerae (U1348-2R-1, 91-92 cm).

—Interval (iii), top-left to clockwise: Globotruncanita stuarti (U1348-2R-1, 20-21cm); Globotruncanita
subspinosa (U1348-2R-1, 11-12 cm); Pseudoguembelina costulata (U1348-2R-1, 11-12 cm).

—Interval (ii)—(iii), top to bottom: Globotruncana stephensoni (U1348-2R-1, 90-91 cm); Globotruncanita
atlantica (U1348-2R-1, 51-52 cm); Globotruncana arca (U1348-2R-1, 90-91 cm); Globotruncana
bulloides U1348-2R-1, 91-92 cm).

Nannofossils

Calcareous nannofossils were examined in smear slides prepared from raw sediment samples. The slides
were observed using standard light microscope techniques, under crossed polarizers, transmitted light, and

phase contrast at 1000x magnification. The nannofossil taxonomy and zonation scheme followed Bown



(1998). Taxa were identified down to the species level, and those in poorly preserved assemblages to the

genus level.
CaCOs3 and total organic carbon (TOC) contents

Relatively small quantities of ooze (c. 0.2 g; for economic use of the limited material) were powdered in an
agate mortal. Total inorganic carbon (TIC) content was measured using UIC CO, coulometer (Model
CM5014) at Pusan National University. TIC content was used to calculate CaCOs content as weight
percentage by the multiplication of factor 8.333. The analytical precision of CaCOj3 content as relative
standard deviation (s.d.) is +1%. Total carbon (TC) contents were also measured by Flash 2000 Series
Elemental Analyzer at Pusan National University. The analytical precision of both parameters are less than

+0.1%. TOC content was calculated by the difference between TC and TIC.
Stable isotopes of bulk carbonates

Bulk stable isotope analysis was carried out at the Bloomsbury Environmental Isotope Facility at
University College London. Powdered samples (same set of samples used for CaCO3; and TOC analyses)
were first treated with hydrogen peroxide and acetone to oxidize any organic matter, and then analyzed on
a ThermoScientific Gas Bench Il device connected to a ThermoFinnegan Delta V continuous flow IRMS.
Precision of all internal (BDH, IAEA & IFC) and external standards (NBS 19) was +0.03%o for §**C and
+0.08%o for 5'°0. All values were reported in the Vienna Pee Dee Bee notation (VPDB) after calibration

with respect to NBS 19.
Stable Isotopes of Benthic Foraminifera

Several taxon-specific benthic foraminiferal specimens were picked from a narrow size fraction (usually at
212-300 or 180-300 pum but sometimes at 150-180 um, depending on availability) of washed samples
prepared by the same method as planktonic foraminifera. Identification was mainly at genus-level by
following Widmark (1997) and also Kaiho (1998), but care was taken so that each separate comprises a
single morphotype. The specimens were ultrasonically cleaned in ethanol prior to analysis.

Isotope ratio measurements of the benthic foraminiferal isolates were measured on a
ThermoFinnigan™ DeltaPlus mass spectrometer with an on-line automated carbonate reaction Kiel 111
device at the Biogeochemistry Isotope Laboratory, University of Missouri. Data are reported as per mil
(%0) deviation relative on the VPDB scale, and have been normalized among run based on the difference
between the within-run average of NBS 19 and its nominal isotopic composition (5*3C = —1.95%o; §'20 =
2.20%o). For standards run with samples that generated >1.5 V of signal for mass 44, replicate

measurements of similar-sized NBS 19 (n = 19) yielded external precision (1 s.d.) better than +0.03%o for



8"3C and +0.05%o for 5'20. In addition, 3 small samples (0.8 to 1.2 \/, mass 44) were run with similar-sized
standards; those standards (n = 6) ran between 0.7 and 1 V at the precision of +0.06%o for 5**C and

+0.09%o for 5'°0.
Sr isotopes of foraminifera

Foraminiferal tests were hand-picked from the >200 um washed fraction for Sr isotope analysis. The
foraminiferal separates weighing ~150 pg each were briefly sonicated in ethanol followed by purified
water, then dissolved using buffered 1M acetic acid (DePaolo et al. 1983). Separation of Sr was carried out
using Sr Spec cation exchange resin in 100 uL Teflon columns. Sr was loaded in ~2 uL 0.0035M H3PO,40n
single rhenium filaments between 0.5 uL aliquots of TaF. Isotope ratio measurements were performed on
thermal ionization mass spectrometer in the R. Ken Williams Radiogenic Isotope Geosciences Lab at Texas
A&M University. The within-run normalization factor for 2°Sr/**Sr was 0.1194. Replicate measurements of
the NIST SRM 987 standard yielded the average of 0.710238 (n = 12), and its difference with respect to
the recommended value (2'Sr/%Sr = 0.710250 for this study) was used for calibration of all sample

875r/%sr data. External reproducibility based on the NIST SRM 987 standard was 9.4 ppm (to 2 s.d.).
Palaeomagnetism

A total of seven discrete sample cubes (2x2x2 cm) were collected from the undisturbed internal portions of
the sediment core, and subjected to stepwise alternating field demagnetization. Measurements were
performed at the multiple steps (10, 15, 20, 22, 25, 30, 35, 40, 45 and 50 mT) on a 2G Enterprises
cryogenic magnetometer installed in a shielded room at the Lamont-Doherty Earth Observatory.

All samples exhibited a clear characteristic component that moves towards the origin of a vector end-
point projection (Fig. S3). Three of them showed shallow inclination (two reverse (84.53 and 84.97 mbsf);
one normal (85.43 mbsf)), with directions close to that expected for the palaeolatitude of Site U1348 at the
time of deposition (~10°N at 80 Ma; Fig. S1). Four other samples (84.43, 84.73, 84.86 and 85.18 mbsf)
with reverse polarity showed much steeper inclinations than expected, most likely due to a drilling-induced

overprint arising from the rotary core barrel drilling. Note this does not affect the polarity interpretation.

Notes on planktonic foraminiferal biostratigraphy

The Campanian—Maastrichtian biochronology of planktonic foraminifera is complicated by inter-
basinal diachroneity of some datum events and should be approached with caution. Such diachroneity has
been demonstrated with integrative magnetostratigraphic data even for commonly used zonal biomarkers

with distinct keeled morphologies, such as Abathomphalus mayaroensis (e.g. Huber & Watkins, 1992) and



Gansserina gansseri (compare Premoli Silva & Sliter (1994) and Li & Keller (1998)). Recently, the middle
Campanian Globotruncana ventricosa Zone was shown to be unreliable due to significantly site-specific
ranges of the nominal index species (Petrizzo et al. 2011).

Interval (ii) of Site U1348-Core 2R is assigned to the G’ta. elevata (C. plummerae) Zone of the early
to middle Campanian (Figs. 1, S2). The middle Campanian C. plummerae Zone has recently been
proposed by Petrizzo et al. (2011) in place of the traditional G. ventricosa Zone. Its base is defined by the
lowest occurrence (LO) of the nominated taxon, which was found to correlate with the lowermost part of
Chron C33N in Bottaccione (Italy) and ODP Site 762 (Exmouth Plateau off NW Australia). These authors
also presented the similar interpretations without magnetostratigraphy for ODP Hole 1210B (Shatsky Rise)
and TDP Site 23 (Tanzania), but the LOs were represented near the bottom of the holes and hence were not
highly reliable. In the case of Site U1348, however, C. plummerae occurs from interval (ii) having a
reversed polarity that is undoubtedly correlated with Chron C33r based on the corresponding Sr isotope
ratios (= 0.70756-0.70757). This discrepancy in the magnetochron assignments for the LO of C.
plummerae is most likely a result of diachroneity in its first appearance datum (FAD), and we infer that the
‘true’ FAD is slightly older than that proposed by Petrizzo et al. (2011). In fact, these authors did not
document the evolutionary first appearance of C. plummerae with observations of intergradational forms
between the ancestral species. As long as the proposed FAD of C. plummerae within C33N is based only
on the data from two sites without the early evolutionary observations of the nominate species, it is
reasonable to assume that its actual FAD still extends back into Chron C33r.

Interval (iii) is somewhat problematic for age interpretation, but the late Campanian age is supported
by the co-occurrence of G'ta. stuarti and G’ta. subspinosa (Robaszynski et al. 1984), together with the
absence of representative Maastrichtian species. The reversed magnetic interval and Sr isotopic results
indicate that this interval should fall within the lower Globotruncana aegyptiaca Zone in standard
biostratigraphic scheme, but the nominal index species is not present in the Site U1348 assemblage.
Interestingly, G. aegyptiaca was also reported to be too sporadic to make a reliable zonal assignment in the

subtropical western North Atlantic (Huber et al. 2008).

Sr isotope stratigraphic ages for central Pacific deep-sea sites
Strategy

The key requirement for this study is objective integration of the new benthic foraminiferal 520 data from
Site U1348 with published results from DSDP Sites 305 and 463 on the standard numerical time scale.
Reliable chronological assessment is particularly essential for the Santonian—Campanian transition interval.

In this study Sr isotope stratigraphy provides the primary chronological basis and integration among sites.
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Sr isotopes are effective as a chronostratigraphic tool over the intervals where the ¥Sr/%°Sr gradient is
relatively steep against time, and the effect of diagenesis is negligible and/or predictable. As discussed
below, these conditions generally hold for the sites examined.

Importantly, Sr isotope stratigraphy is advantageous in maintaining the objectivity for the Santonian—
Campanian transition chronology of this study. If planktonic foraminiferal datums alone are used for Sites
305 and 463, both sites would necessitate the early—-middle Campanian age scaling via extrapolation of
age-depth relationship downward from the Radotruncana calcarata Zone several tens of meters above, and
this treatment would be the source of much uncertainty. Sr isotope stratigraphy also merits in the case of
poor core recovery (e.g. Cenomanian—-Coniacian interval of Site 463), such that even single &’Sr/%Sr data
point is convertible to a specific numerical age, with error of <1 m.y. for the Late Cretaceous, whereas
microfossil zones inevitably have at least a few million years of resolution. In addition, inter-basinal
diachroneity in datum events are present for late Campanian—Maastrichtian planktonic foraminifera (see
above Notes on planktonic foraminiferal biostratigraphy).

The following are the basic steps of numerical age assignments for Sites 305 and 463. (1) For each
site, the relationship of 8'Sr/*®Sr as a function of sub-bottom depth (i.e. &’Sr/%°Sr = f(mbsf)) is generated
using either a linear or polynomial fit to the ¥ Sr/%Sr profile; every level is thus provided a predicted
87Sr/%sr ratio. (2) For the standard Sr isotope curve (modified) (Fig. S4; see next section), the relationship
of #’Sr/®®Sr as a function of age (i.e. Ma = f(*’Sr/*®Sr)) is generated using higher-order polynomials. (3)
Substituting the predicted ¥ Sr/%°Sr ratio of (1) into Ma = f(3’Sr/%°Sr) of (2), an age-depth relationship is
developed. These procedures are graphically summarized in Figure S5. This is an inverse approach of
Ando et al. (2009) for Site 463, whose strategy was to plot the Sr isotope data in the standard
chronostratigraphic framework using planktonic foraminiferal biochronology. In that study, a good match
of the Site 463 Sr isotope data against the reference Sr isotope curves was shown, despite limited
planktonic foraminiferal age-controls due to poor core recovery. The present reverse approach should

therefore produce a reasonable result as well.
Standard Sr isotope stratigraphy (Fig. S4)

The standard Sr isotope stratigraphy used in this study is from published Late Cretaceous ®'Sr/*®Sr data
sources cited in McArthur & Howarth (2004), plotted against the standard magnetobiochronology in
GTS2004 of Ogg et al. (2004). For compilation of published 8’Sr/%Sr data, datum levels presented in
respective literature sources (upward-pointing arrows in Fig. S4) are updated using GTS2004, and used for
rescaling of the ®’Sr/®*Sr data assuming a linear sedimentation rate between adjacent datums. In this study,
the Campanian—Maastrichtian portion of McArthur et al.’s (1994) data are not adopted because some

uncertainties may still exist regarding the correlation of Campanian U.S. Western Interior ammonite zones
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to the standard geomagnetic polarity time scale (Leahy & Lerbekmo, 1994; Ward et al. 2012). Besides,
Campanian—Maastrichtian within-biozone #'Sr/**Sr variation is somewhat larger, and the Sr/%°Sr ratios
are slightly offset when integrated with the European Sr isotope curve. One thing to note is that the range
of the planktonic foraminiferal Rd. calcarata Zone, an important bioevent for mid-Campanian open-ocean
correlation worldwide, is intuitively narrower than usual in GTS2004, although the reason is unclear. An
alternative range of the Rd. calcarata Zone is shown, which is the relative position of the nominal zone

within Chron C33n at Gubbio, Italy (Premoli Silva & Sliter, 1994).
DSDP Site 305 (Fig. S5a)

Campanian—-Maastrichtian Sr isotope data for Site 305 are generated by Mearon et al. (2003) using barites
and ‘carbonates’ (type of carbonate material not specified) and by Barrera et al. (1997) and Barrera &
Savin (1999) using foraminifera at a much narrower stratigraphic coverage. The barite 3'Sr/*®Sr profile
shows a fairly consistent linear trend as a function of sub-bottom depth or age, yet there is a minor but
noticeable break in the trend at ~160 mbsf (the junction of Cores17 and 18), which can also be seen in the
foraminiferal 8 Sr/%Sr data of Barrera & Savin (1999, Table Appendix 1 therein). Notably, this break
clearly correlates with a concerted jump in §'°C and 5'0 values of benthic foraminifera Nuttallides
truempyi (Barrera & Savin, 1999) and bulk carbonates (Voigt et al. 2010). These observations support an
unconformity at the Core 17/18 boundary, justifying the breaking of Sr isotope-based age model into two
segments.

To generate the ¥Sr/%°Sr (barite) vs. sub-bottom depth relationship, a linear regression is applied to
data from the Core 18-29 interval. Above the unconformity, the same slope of linear function is fitted over
the rest of 3'Sr/®®Sr ratios up-section (n = 5). The resultant age-depth curves suggest ~1.7 m.y. of hiatus

during the Maastrichtian (69.3-67.6 Ma).
DSDP Site 463 (Fig. S5b)

Sr isotope stratigraphy for this site was presented in Ando et al. (2009) using chiefly bulk carbonates for
the entire Upper Cretaceous interval, and by Barrera & Savin (1999) using foraminiferal calcite for the
upper Campanian—Maastrichtian. These two data sets match closely and compare well with the reference
875r/%sr curves when plotted using planktonic foraminiferal ages.

An important feature of the %'Sr/*®Sr profile is the major step in values within Site 463-Core 26. In
Core 26, a color change occurs at 218.9 mbsf (463-26-3, 140 cm) from pinkish-white (below) to white
(above), and the top 10 cm of the pinkish-white chalk interval is burrowed (Ando, unpublished observation
at IODP Gulf Coast Repository, May 2011). These observations strongly indicate an unconformity at this

level; as expected, planktonic foraminifera show a fundamental assemblage compositional change from the



Coniacian (= Dicarinella concavata Zone (upper part, with highly evolved form of D. concavata)) to
Campanian (= Globotruncanita elevata Zone), according to preliminary examination of several washed
samples (1 sample per section) through Core 26 by the present author.

Note that Ando et al. (2009) also reported that the Site 463 3'Sr/*®Sr profile for the Albian—Turonian
interval has marginal offset toward lower ¥ Sr/%Sr ratios than expected biostratigraphically. This site is
typified by having significantly low ¥ Sr/%°Sr ratios in interstitial-water at greater sub-bottom depth (Ando
et al. 2009, Appendix 4 therein). Thus, the observed ®'Sr/®°Sr offset is most likely a result of diagenetic
overprinting of interstitial-water Sr isotopic signatures.

To generate the numerical age model, the 8Sr/%Sr vs. sub-bottom depth relationship is represented by
higher-order polynomials. The upper Cenomanian—Coniacian interval (grey line) is broken into two parts
at the ¥Sr/%°Sr inflection of 252.58 mbsf, and they are then shifted by +0.000015 in order to make
correction for a diagenetic offset (solid line). This adjustment makes the ®’Sr/%Sr ratio of the inflection
point at Site 463 equivalent to ®’Sr/®®Sr for the correlative 95 Ma 8'Sr/%°Sr inflection baseline in the
standard Sr isotope curve. Comparing with the standard ¥ Sr/%°Sr curve, the age-depth relationship is
proposed for Site 463, which shows that the duration of latest Coniacian—early Campanian hiatus is 6.6 m.y.

(86.2-79.6 Ma).
Accuracy of Sr isotope-derived ages

Reliability of the Sr isotope-based chronology described above is supported by: (1) one-by-one
correspondence of planktonic foraminiferal zones between Site 463 and GTS2004 via the Sr isotopic age-
depth curve through the Cenomanian to mid-Campanian (lack of correlation in the late Campanian—
Maastrichtian interval could be due to diachronous planktonic foraminiferal datums); and (2) precise
agreement of the ¥ Sr/%°Sr ranges for the Rd. calcarata Zone between Site 305 (3'Sr/%°Sr = 0.70767-
0.70772 (214.00-186.00 mbsf)) and Site 463 (3'Sr/*°Sr = 0.70766-0.70770 (192.47-176.71 mbsf)).
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Fig. S1. Map showing present-day locations of IODP Site U1348 (Shatsky Rise), DSDP Site 305 (Shatsky Rise), and DSDP
Site 463 (Mid-Pacific Mountains), and color bathymetric map showing all Shatsky Rise DSDP/ODP/IODP sites (courtesy of
Will Sager). Also shown is 80 Ma palaeolocation of Shatsky Rise, adopted from Shipboard Scientific Party (2002; Fig. F4
therein). This study follows palaeolatitude reconstruction by Shipboard Scientific Party (2002), which indicates north-of-
equator position of Shatsky Rise since the earliest Cretaceous. This estimate is supported by actual palaeomagnetic
measurements of Berriasian sediments at Site 1213 (~5°N at ~140 Ma) (Sager et al. 2005).
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Fig. S2. (a) Supplement to Figure 1(main text) with additional diagrams of total organic carbon (TOC) contents, 5°C values
of bulk carbonates, and relative abundance of planktonic foraminiferal genera for Site U1348-Core 2R. Marginotr—

Marginotruncana; trocho.—other trochospiral taxa. Benthic foraminiferal 0 values shown are raw data that are not
corrected for vital effect-induced inter-taxon offset. (b) Stereomicroscopic images of benthic foraminifera showing very
good preservation with dully translucent 'pearly" tests: (left) spiral view of Nuttallides (IODP Sample U1348-2R-1, 21-22
cm); (right) umbilical view of Oridorsalis (IODP Sample U1348-2R-1, 91-92 cm). Dryness of specimens was confirmed
before imaging, and hence the demonstrated test translucency and surface reflection are the original features, not because of
moistening. (¢) SEM images of wall cross-section of Oridorsalis (IODP Sample U1348-2R-1, 61-62 cm) showing original
granular texture. Faint ¢. 1 micron-thick layer of surface dissolution and/or recrystallization can be seen both externally and
internally (indicated by paired red arrows).
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Fig. S3. Examples of orthogonal projections of palaeomagnetic data from Site U1348-Core 2R. Open circles represent
vector end point projection on vertical plane (inclination), and closed circles represent vector end point projection on
horizontal plane (declination).
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Fig. S4. Compilation of published *Sr/*Sr datasets for standard Late Cretaceous Sr isotope stratigraphy adopted in this
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respective literature sources (McArthur et al. 1993a, Table 2; McArthur et al. 1993b, p. 199, Fig. 2; McArthur et al. 1994,
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precision (+2 standard error). Small black arrows in *’Sr/*Sr panel indicate data points not used for regression analysis (Fig.
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Fig. S6. Updated Late Cretaceous benthic foraminiferal stable isotope compilation for central Pacific DSDP Sites 305 and
463, using age-depth relationships of Figure S5. (a) Benthic foraminiferal &**O compilation, wit no correction for inter-
taxon & *O vital effect. Note obvious offset of datasets between Praebulimina and Globorotalites at Turonian—early

Campanian of Site 463 (Friedrich et al. 2012). Data points from the latter group are not adopted in Figure 2 (main text);
Globorotalites shows somewhat extreme isotopic behavior with greater extent of scatter, and it is also known for its

disequilibrium &0 precipitation (Friedrich ez al. 2006). (b) Benthic foraminiferal °C compilation. Note fairly good match

of Nuttallides 8" C values between Sites 305 and 463, providing supportive evidence for the presence of unconformity at
Site 305, as illustrated in Figure S5.



TABLE S1. SELECTED PLANKTONIC FORAMINIFERAL OCCURRENCE AND ABUNDANCE, IODP SITE U1348

©19}]|91S09 eUlBqWaNBopnasd < uuwoowxweoe | |||
B1e[NIS02 eullpqwanbopnasd wowowowouw |-
ereue|d x|j8yosaleoH O I - -
snyeuled sa)luoSsIspuaH [~ 1 1 | | + | [ N
lllennu eLeNIXel0pNasd O I N O S o
EISERCEIVNIEYY T S Ay S« <
ele)sodobni elebis e [ I BN o < VA s o R TR
sisuajepwioy ,e|jabiaqpaH,, x x x xcx |+~ | | | | | | |
[Uenis e)juesunogqo| e o |
esouldsgns e)ueduNI0gqo|D O O I A T T I O
SIwJoyen)s BllUBIUNII0q0|D L W ow TR T O I
eI[JUe|e BlIURIUNII0gO[D | - | x +—x | | | |
siwiojienis
' e owr | = |
[erenale e)ueduNI0gqo|o
Iy eueduUNI0go|9 [ 4 w o |
luosuaydais eueaunsoqo|9 O 000000 X+ =
S9pIOo|INg BULIUNNOQO|D | | @@ o wuww | | | |
BOJR BURBIUNII0GO|D r roroeeoeowe oo | | ||
dnoif euelsuull BUBIUNIOGO|D OO0 O0OOoOILCILL OOOLOOLOICLOCL
Siwuoy|[ered ruedUNIOSNU0D | 2+ | max++ | - | | | |
seJowwn|d eueOUNNOSNUOD [ 1 | | | ¢&eaecw | | | |
©1e0JUI0} BURDUNIIOSNIU0D OO0OWL OO0OOLEKK¥EuUEXeEeELwLLL
esonuis euesunnoulbrep 1 1 1 | | | Fxxowomxo
ele|npun euesunoulbrep 1 11+ 1 1 1 |+ ]rFxt+
©JRARIUOD B|jaUledIq [ 111 " 1 1 1| | +eeerex
eoL1oWASE BljauLedIq e I B o A 14
o8
2 «(1ems elo— Sg ¢ eolsWAse
Q esouldsgns ©1,9) 0g E e||aulealg
[<}]
T3
£LE2% 3338838383828 R 3838
82534 NIBHORK QXSS AN ®0 I H o
8 € a € S & F fF & F § 0O 0 W0 W0 W W W W
~ €O 0 O W W O 0 O 0 0 0 0 O o o
5 5555
£ §55E5E5EGE 3 § a9 < 0
S A4 dddddddag T 7D
O N M S v © N~ O o | ] © o o I~
8 T dddddod & ™ = ad
w eaaoseenrn®addyiy
2 o o o S dd o d 5000 00
= r orooooroo©oeox©oeoowo o
n Fagagagqaagaagagqaqaq
<< < <€ € € <€ <€ <C<CCIC<C <L« LK
QO 0O 0 0 O 0 0 0 0 0 0 00 0 0 o
SIS S S A S S RS SRS S RS S S S
M MO O O O O O O O O O O O O oM
e = = = = = = = e e
DDO>D>DDD>DD>DDDDDD

common (>10-20%)

abundant (>20%)
few (>5-10%)
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TABLE S2. SELECTED NANNOFOSSIL OCCURRENCE AND ABUNDANCE, IODP SITE U1348
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Depth
(mbsf)

Sample ID

R C

F

C

R C C
R C C
R F C

84.26

U1348A-2R-1, 6 cm

F

84.28

U1348A-2R-1, 8 cm

C
C

84.30

U1348A-2R-1, 10 cm

R C€C C R

84.35

U1348A-2R-1, 15 cm

F

R C R R
R C

84.40
84.45
84.50

U1348A-2R-1, 20 cm

— — C F

R R

F

U1348A-2R-1, 25 cm

F C C F

C
Cc

U1348A-2R-1, 30 cm

F
R F C R

R C

84.55

U1348A-2R-1, 35 cm

F

84.60

U1348A-2R-1, 40 cm

R

C R

84.65

U1348A-2R-1, 45 cm

84.70

U1348A-2R-1, 50 cm

F R C R C

84.75

U1348A-2R-1, 55 cm

84.80

U1348A-2R-1, 60 cm

F

R C

C

84.85

U1348A-2R-1, 65 cm

E
E
E
C

R C R

84.90

U1348A-2R-1, 70 cm

C R
R C R
R C R R C

84.95

U1348A-2R-1, 75 cm

— C C ¢C

R R

85.00
85.05

85.10

U1348A-2R-1, 80 cm

U1348A-2R-1, 85 cm

cC C C

R R

C

R

U1348A-2R-1, 90 cm

R R R R

85.15

U1348A-2R-1, 95 cm

R R A

R R

85.20
85.29
85.34
85.38
85.43
85.48

U1348A-2R-1, 100 cm

R R R R R C C

R R R

U1348A-2R-CC, 2 cm

R R

=
C R R

C R

F C C

U1348A-2R-CC, 7 cm

R C C C
R C C

F C C — R R R

R

U1348A-2R-CC, 11 cm

— R R C C

R R R R R R

U1348A-2R-CC, 16 cm

cC C A R

F C C

R R R

U1348A-2R-CC, 21 cm

Note: Species with rare occurrence at single sample eliminated from this list (except for U. sissinghii)

*Age-diagnostic species listed in Expedition 324 Scientists (2010, Table T2)

abundant (>10-100 specimens per field of view)
common (>1-10 specimens per field of view)
frequent (1 specimen per 1-10 fields of view)

rare (<1 specimen per 10 fields of view)

absent

A
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E

R =



TABLE S3. BULK SEDIMENT CACQO;, TOC, AND STABLE ISOTOPE DATA, IODP SITE U1348

. 13~. 18 .
Sample ID m?(f—?giﬁt Cacos Toc 5c 50 dfpligéte dfpli?éte
(mbsf) (Wt.%) (Wt.%) (%o VPDB) (%o VPDB) (% VPDB) (%o VPDB)
U1348A-2R-1, 9-10 cm 84.295 95.845 0.297 2.992 -0.687 — —
U1348A-2R-1, 20-21 cm 84.405 93.802 0.297 2.915 -0.708 2.898 -0.594
U1348A-2R-1, 30-31 cm 84.505 96.070 0.023 2.918 -0.745 2.806 -0.703
U1348A-2R-1, 40-41 cm 84.605 94.782 0.171 2.958 -0.714 — —
U1348A-2R-1, 50-51 cm 84.705 96.894 0.006 2.927 -0.547 — —
U1348A-2R-1, 60—61 cm 84.805 96.305 0.079 2.899 -0.624 — —
U1348A-2R-1, 70-71 cm 84.905 95.569 0.080 2.826 -0.814 — —
U1348A-2R-1, 80-81 cm 85.005 93.935 0.269 2.829 -1.124 — —
U1348A-2R-1, 90-91 cm 85.105 93.472 0.105 2.863 -1.165 — —
U1348A-2R-1, 100-101 cm 85.205 93.364 0.234 3.016 -1.264 — —
U1348A-2R-CC, 3—-4 cm 85.305 93.478 0.251 2.817 -1.561 — —
U1348A-2R-CC, 10-11 cm 85.375 94.766 0.091 2.773 -1.735 — —
U1348A-2R-CC, 13-14 cm 85.405 95.369 0.064 2.725 -1.655 — —
U1348A-2R-CC, 23-24 cm 85.505 94.838 0.154 2.713 -1.655 — —
U1348A-2R-CC, 27-30 cm 85.555 96.289 0.016 — — — —

Note: Horizontal bar = No data present
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TABLE S5. FORAMINIFERAL SR ISOTOPE DATA, IODP SITE U1348

Depth:

Sample ID mid-point V'sisr. 87.Sr/863r: Error’
(mbsf) raw data calibrated*
U1348A-2R-1, 7-8 cm 84.275 0.707685 0.707697 + 0.000008
U1348A-2R-1, 18-19 cm 84.385 0.707635 0.707647 + 0.000007
U1348A-2R-1, 27-28 cm 84.475 0.707682 0.707695 + 0.000013
U1348A-2R-1, 39-40 cm 84.595 0.707677 0.707690 + 0.000015
U1348A-2R-1, 62-63 cm 84.825 0.707650 0.707662 + 0.000009
(ditto) 84.825 0.707642 0.707654 + 0.000010
U1348A-2R-1, 71-72 cm 84.915 0.707658 0.707670 + 0.000013
U1348A-2R-1, 80-81 cm 85.005 0.707550 0.707562 + 0.000009
U1348A-2R-1, 87-88 cm 85.075 0.707559 0.707571 + 0.000008
U1348A-2R-1, 93-94 cm 85.135 0.707547 0.707559 + 0.000009
(ditto) 85.135 0.707562 0.707574 + 0.000012
U1348A-2R-1, 101-102cm  85.215 0.707547 0.707559 + 0.000011
U1348A-2R-CC, 3-4 cm 85.305 0.707473 0.707485 + 0.000010
U1348A-2R-CC, 10-11 cm 85.375 0.707459 0.707471 + 0.000010
U1348A-2R-CC, 17-18 cm 85.445 0.707485 0.707497 + 0.000010

*Calibrated with respect to NIST SRM 987 = 0.710250

"2 standard error of internal precision





